Uniqueness for fractional parabolic and elliptic equations with drift

نویسندگان

چکیده

We investigate uniqueness, in suitable weighted Lebesgue spaces, of solutions to a class linear, nonlocal parabolic problems with drift. More precisely, the problem is due presence fractional Laplacian as diffusion operator. The drift term driven by smooth enough, possibly unbounded vector field $ b which satisfies growth condition set \{x\in {\mathbb{R}}^N:\langle b(x), x\rangle> 0\} $. In general, our uniqueness includes solutions; particular, we get bounded solutions. Furthermore, show sharpness hypothesis on $; fact that, if violates, an appropriate sense, mentioned (see (2.5)), then infinitely many exist. Finally, also elliptic equation obtaining similar results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

{contraction and Uniqueness for Quasilinear Elliptic{parabolic Equations

We prove L1{contraction principle and uniqueness of solutions for quasilinear elliptic{parabolic equations of the form @t[b(u)] div[a(ru; b(u))] + f(b(u)) = 0 in (0; T ) ; where b is monotone nondecreasing and continuous. We only assume that u is a weak solution of nite energy (see [1]). In particular, we do not suppose that the distributional derivative @t[b(u)] is a bounded Borel measure or a...

متن کامل

Backward Uniqueness for Parabolic Equations

It is shown that a function u satisfying |∂t + u| M (|u| + |∇u|), |u(x, t)| MeM|x| in (R \ BR) × [0, T ] and u(x, 0) = 0 for x ∈ R \ BR must vanish identically in R \ BR × [0, T ].

متن کامل

Elliptic and Parabolic Equations

Elliptic equations: 1. Harmonic functions 2. Perron’s method 3. Potential theory 4. Existence results; the method of suband supersolutions 5. Classical maximum principles for elliptic equations 6. More regularity, Schauder’s theory for general elliptic operators 7. The weak solution approach in one space dimension 8. Eigenfunctions for the Sturm-Liouville problem 9. Generalization to more dimen...

متن کامل

Quantitative uniqueness estimates for second order elliptic equations with unbounded drift

In this paper we derive quantitative uniqueness estimates at infinity for solutions to an elliptic equation with unbounded drift in the plane. More precisely, let u be a real solution to ∆u + W · ∇u = 0 in R2, where W is real vector and ‖W‖Lp(R2) ≤ K for 2 ≤ p <∞. Assume that ‖u‖L∞(R2) ≤ C0 and satisfies certain a priori assumption at 0. Then u satisfies the following asymptotic estimates at R ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2023

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2023054